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The potential for nitrate to affect amphibian survival was evaluated by e the areas in
North America where concentrations of nitrate in water occur above amphibian toxici thresh-
olds. Nitrogen poliution from anthropogenic sources enters bodies ofwater through aricultur
runoff or percolation associated with nitrogen ferilizaon liock on, and effluents
from industrial and human wastes. Environmental concentrations of nitrate in watersheds
throughout North America range from < 1 to > 100 mg/L. Of the 8,545 water quality samples
collected from states and provinces bordering the Great Lakes, 19.8% contained nitrate concen-
trations exceeding those which can cause sublethal effects in amphibians. In the laboratory lethal
and sublethal eflfcs in amphibians are detected at nitrate concentrations between 2.5 and 100
mg/L. Furthermore, amphibian prey such as insects and predators of amphibians such as fish are
also sensitive to these elevated levels of nitrate. From this we condude that nitrate concentrations
in some watersheds in North America are high enough to cause death and developmental anom-
alies in amphibians and impact other animals in aquatic ecoystems. In some situations, the use of
vegetated bufir strips adjacent to water courses can reduce nitrogen contamination of surface
waters. Ultimately, there is a need to reduce runoff, swage effluent discarge, and the use of
fertilizers, and to establish and enforce water quality idines for nitrate for the protection of
aquatic organisms. Key workr amphibians, nitrate, toxicity, water quality. Environ Health
Perspect 107:799403 (1999). [Online 31 August 1999]
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Several regional and global reviews have
reported extinctions, extirpations, and serious
declines of a number ofamphibian species and
their populations (1-6). The detrimental
effect that habitat destruction has on amphib-
ian populations is undeniable (7). Because
anthropogenic pollution has had population
level impacts on other vertebrates such as colo-
nial waterbirds (8), mammals (9, reptiles (10),
and fish (11), the lack oflong-term population
information on amphibians (12-14) should
not prevent scientists from hypothesizing and
studying the impacts of pollution on amphib-
ian health and populations. Chemical stressors
such as acid deposition, industrial chemicals,
pesticides, heavy metals, salts, and nitrogen
fertilizers are possible anthropogenic causes for
the decline of some amphibian populations
around the world, but the impact of these fac-
tors is poorly understood (15). This evaluation
focuses on potential effects in North America
of one pervasive pollutant, nitrate-nitrogen,
which is highly toxic to amphibians.

Different forms of nitrogen are found
globally in aquatic ecosystems. Nitrogen in
the aquatic environment occurs in four forms
(ammonium ion, ammonia, nitrite, and
nitrate). All nitrate values in this review are
reported as nitrogen in nitrate-nitrogen. The
most toxic nitrogen to biota is ammonia,
followed by nitrite and nitrate (16). Because
ammonia and nitrite are quickly oxidized to
nitrate by bacteria and algae in the aquatic
environment, they are mainly problems when
they originate in large volumes from point

sources such as industrial effluents and live-
stock feed lots and slaughterhouses or areas
that lack nitrification treatment of urban
sewage. Although nitrate is the least toxic of
the three forms, it occurs at the highest con-
centrations and is the most stable form of
nitrogen in the aquatic environment (16).
Natural background concentrations of nitrate
in groundwater in temperate regions range
from trace amounts to 3 mg/L (17-19),
whereas concentrations above 3 mg/L reflect
anthropogenic contamination (18).

Nitrogen contamination occurs in both
agricultural and urban areas. The primary
anthropogenic sources of nitrogen contami-
nation ofwater in agricultural areas are nitro-
gen-based fertilizers and animal waste (20).
In urban areas the main sources of nitrogen
contamination are effluents from industrial
and wastewater treatment plants, lawn fertil-
izers, and atmospheric deposition from the
burning of fossil fuels. Concentrations of
nitrate in aquatic ecosystems affected by agri-
cultural and urban activities around the
world can exceed 100 mg/L (21-24).

Sources
Nitrogen use in agricultural areas. Around
the world, the amount of nitrogen applied to
agricultural land has increased since the early
1960s (25). The estimated amount of nitro-
gen fertilizer used globally in 1991 was 72
million tons (26). In the United States,
nitrogen-based fertilizer use increased from
approximately 2.5 million tons in 1960 to

almost 11.9 million tons/year in 1985 (27).
The use of nitrogen fertilizers in North
America is concentrated in Indiana, Illinois,
Iowa, Ohio, and other intensely cultivated
areas (28) (Figure 1).

Seasonal variation. Nitrate is soluble in
water and can be transported both overland
and underground (2,9. In temperate areas of
North America, environmental nitrate con-
centrations in the water are usually highest
during late fall, winter, and spring. The high
levels are attributed to several factors, the
most prominent being the reduced assimila-
tion of nitrate by row crops and other plants
during the dormant periods of plant growth
such as in the fall, winter, and spring.
Because the amount of nitrogen uptake by
the plants decreases, the amount of nitrate
available to be leached from the ground
increases (20). For example, tributaries of
the inner bay of Rondeau Provincial Park on
the north shore of Lake Erie, Canada, con-
tained concentrations of nitrate between 7
and 13 mg/L for the winter and spring
months of February through May 1983.
During July and August, the concentration
in these tributaries was 4 mg/L (30). These
tributaries drain intensive row-cropped agri-
culture. Increased frequency of storm events
during this time period may also lead to
increased transport of nitrate from runoff
and tile drains to streams and rivers in North
America (20).

Concentrations in streams. Average
nitrate concentrations in streams traversing
agricultural landscapes in North America
typically range between 2 and 40 mg/L
(20,25). Nitrate concentrations > 10 mg/L in
the water can persist for several weeks (25).
Hooda et al. (31) demonstrated that stream
nitrate concentrations increased as land use
changed from woodland through grassland to
arable farming. Many studies from North
America, Europe, and Australia show the
same relationships with land use change and
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Figure 1. Nitrogen fertilizer use in the continental United States, 1991 (28).

nitrate concentrations (18,32-34). Small
streams draining intensively row-cropped
agricultural land have higher concentrations
of nitrate than do larger streams.

Nitrogen in urban areas. Industrial efflu-
ents and wastewater-treatment plant dis-
charges are a substantial source of nitrogen to
aquatic ecosystems. Although these point
sources contribute only a small percentage of
the total nitrogen released to the environ-
ment, long-term direct discharge to a water-
course could have a significant detrimental
effect on stream ecosystems downstream of
the discharge site. Elevated nitrate concentra-
tions were found in Coote's Paradise, a wet-
land complex in Dundas, Ontario, Canada
(35). The nitrate originated from the Dundas
sewage treatment plant effluent pipe, which
discharges approximately 700 m upstream of
this wetland. Nitrate concentrations in the
water increased as the distance to the dis-
charge pipe decreased (35). In 1997, concen-
trations of nitrate in the wetland ranged from
4.2 mg/L on 2 July to 9.5 mg/L on 4 June,
with an average concentration between 7
May and 3 September of 6.3 mg/L (36).
Similar concentrations of nitrate have been
recorded in the Coote's Paradise wetland
since the sewage treatment plant installed a
nitrification system in 1978 that reduces the
amount of ammonia but increases the
amount of nitrate in the effluent (35).

Another source of nitrate contamination
in urban areas is precipitation. Rain, snow,
and fog contain various amounts of nitrogen
depending on geographic location. Motor

vehicle and industrial exhausts contribute
nitrogen oxides to the atmosphere that are
deposited into the aquatic ecosystem through
precipitation. In heavily populated industrial-
ized areas the concentration of nitrogen in
precipitation can be elevated. For example,
concentrations of nitrate > 2 mg/L are found
in precipitation in the Great Lakes area (37).
Atmospheric nitrogen can enter aquatic
ecosystems through direct precipitation on
the watercourse or through runoff into the
watershed via storm sewers. In forested or
heavily vegetated areas that are not artificially
fertilized, the land has a natural ability to
absorb and utilize the nitrogen in the precipi-
tation. Atmospheric deposition may be a
problem in watersheds that do not have an
extensive ground cover of natural vegetation
such as in urban areas.

Effects on amphibians. Nitrate at concen-
trations detected in surface waters has both
acute and chronic toxic effects on several
species of amphibians (38-41). Berger (41)
attributed a 20-year decline of amphibian
numbers in an agricultural landscape near
Turew, Poland, to high levels of nitrate in
surface waters resulting from nitrogen
fertilizers. Bishop et al. (4.l studied an inten-
sive vegetable-growing area in the Holland
Marsh in Ontario, Canada, and concluded
that habitat loss and nitrate levels in wedands
were more important than pesticide use in
affecting amphibian survival and species
diversity. Although nitrate levels were elevat-
ed, pesticide concentrations were low and
often not detectable in the agricultural area.

Short-term experiments that determine
the lethal concentration of nitrate to 50% of
test individuals (96-hr LC50) and 100-day
chronic toxicity experiments have been con-
ducted on tadpoles of the western chorus frog
(Pseudcacris triseriata), northern leopard frog
(Rana pipiens), and green frog (Rana clami-
tans) (38). For these species, eggs were col-
lected in the wild, hatched in captivity, and
exposed to nitrate as tadpoles. Western cho-
rus frog tadpoles were the most susceptible to
nitrate, followed by northern leopard frog
and green frog (38) (Table 1). Hecnar (38)
also showed that physical and behavioral
abnormalities developed at concentrations as
low as 3 mg/L in 96-hr LC50 tests. These
effects induded reduced feeding and mobility
resulting in severe weight loss and high
mortality of the individuals. In addition to
reduced swimming and feeding, develop-
mental deformities induding bent tails, body
swelling and bulging, head deformities, and
digestive-system deformities occurred. The
severity of the effects was positively correlated
with increasing concentrations of nitrate.
The effects observed in the chronic experi-
ments were similar to those in the 96-hr
LC50 experiments.

Baker and Waights (39,40) found that
concentrations of nitrate at 9 and 22.6 mg/L
caused reduced growth, behavioral changes,
and increased mortality in the common toad
(Bufo bufo) and White's tree frog (Litoria
caerulea) (Table 1). The effects of nitrate on
the tadpoles were similar in the low and high
concentrations. Approximately half of the
tadpoles died within 8 days of being exposed
to the lower concentration; however, a large
percentage of the mortality occurred within
the first 96 hr (39,40).

Hecnar (38) also performed 96-hr LC50
nitrate determinations for American toads
(Bufo americanus) collected in the wild and
exposed as tadpoles in captivity. The 96 hr-
LC50 values for two samples of American
toad tadpoles were 13.6 and 39.3 mg/L. The
sample of toads showing a 96-hr-LC50 of
39.3 mg/L was collected at a later time of
year from a pond in an agricultural area.
These samples of tadpoles could have been
differentially exposed to nitrate contamination
or the sample from the agricultural area
could represent a resistant population.

Baker and Waights (39) and Xu and
Oldham (43) conducted studies to determine
the toxicity of nitrate for the common toad.
The effective concentrations were strikingly
different (Table 1). This was probably due to
differences in the test species and in experi-
mental design. The studies used two popula-
tions of common toads as well as tadpoles of
different ages. Baker and Waights (39) col-
lected their test sample from the wild as eggs
and allowed them to hatch in captivity,
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whereas Xu and Oldham (43) collected their
test sample as tadpoles. They also used differ-
ent rearing media: Baker and Waights used
distilled water and Xu and Oldham used arti-
ficial pond water.

Hecnar (38) suggested that a possible
mechanism for reduced feeding was a
nitrate-caused disturbance of a symbiosis
between the tadpole and gut bacteria
involved in digestion. The probable mecha-
nism causing the reduced activity in the
tadpoles is a result of the development of
methemoglobinemia. In humans, this is
known as blue-baby syndrome and occurs in
infants younger than 6 months of age that
are exposed to nitrate-contaminated water
(32). The condition results from gut bacteria
converting nitrate to nitrite, which is absorbed
and then oxidizes iron in hemoglobin to
form methemoglobin that is unable to bind
oxygen (32). Young children and possibly
young tadpoles have an inadequate number
of bacteria required to efficiently reduce the
available nitrite and are not capable of proper
nitrate metabolism. Conversely, adults have a
more diverse population of gut bacteria and
are capable of effectively reducing the amount
of available nitrite (32). Methemoglobin has
been detected in bullfrog (Rana catesbeiana)
tadpoles exposed to nitrites (46). If the devel-
opment of methemoglobin is the mechanism
responsible for reduced activity in amphib-
ians, then it may also be responsible for
reduced feeding activity. Marco and Blaustein
(6) found that tadpoles exposed to low leVels
of nitrite transformed more slowly than did
control tadpoles. They also found that the
exposed tadpoles occupied shallow water
more often, and speculated that the tadpoles
were trying to get more oxygen. The water
quality guideline for the protection of human
health for drinking water for nitrates is a con-
centration of 10 mg/L (47); however, water
quality criteria for nitrate for the protection of
wildlife do not exist.

Most reports on the effect of nitrate on
amphibians have examined the effects on tad-
poles, not on adults. However, one study
examined the effect of ammonium nitrate on
adult common frogs (Rana temporaria) (44).
Oldham et al. (44) spread ammonium nitrate
granules on moist chromatography paper at
concentrations of 0 (control), 1.5, 3.1, 6.2,
and 12.4 g/m2 and on soil at the same con-
centrations with the addition of a 24.8-g/m2
exposure. They placed three adult male frogs
on each of the substrates at each exposure
level except the control, where 12 frogs were
used, and observed them for toxic symptoms.
The frogs were considered affected and were
removed from the substrate when they exhib-
ited clinical signs of acute toxicosis, which
was predicted would lead to death. At the 3.1
and 6.2 g/m2 paper concentrations, two of

three frogs were affected within 300 min
exposure. At the 12.4-g/m2 paper exposure,
three of three frogs exhibited clinical signs of
acute toxicosis and were removed by 120
min. On the soil substrate, one frog was
affected at 6.2 g/m2 ammonium nitrate by
60 min, three frogs were affected at 12.4
g/m2 by 360 min, and three frogs were
affected at 24.8 g/m2 by 15 min exposure.
Oldham et al. (44) also conducted a field
study in which they exposed common frogs
to concentrations of 10.8 and 19.9 g/m2
ammonium nitrate existing in a wheat field
and a grass field, respectively. In both treat-
ments (three individuals per field), 100% of
the frogs exposed were affected by the expo-
sure concentrations. However, they also
found that persistence of the toxic effect of
granular ammonium nitrate decreased quick-
ly once the granules dissolved, which under
normal field conditions usually takes 1 hr. A
similar field study in Germany found that
nitrate fertilizers seriously harmed and killed
amphibians as they migrated over recently
fertilized fields (48).

Few other studies examining the sub-
lethal impacts of nitrate on amphibians exist.
However, one study revealed that nitrate
stress may depress immune response and
blood hemoglobin in amphibian tadpoles.
Dappen (49) found decreased levels of circu-
lating white cells and decreased hemoglobin
values in bullfrogs and leopard frogs exposed
to 9-26 mg/L of nitrate for 3 weeks.

Because data are lacking for most
species, definitive conclusions on all anuran
species cannot be made. However, environ-
mental nitrate concentrations overlap with

concentrations that have direct lethal and sub-
lethal effects on amphibians in the laboratory.

Efrects on amphibian prey and predutors.
Tadpole diets consist mainly of plant matter,
plankton, and bacteria, whereas diets of adult
frogs consist mainly of insects and small verte-
brates. Tadpoles are prey to many predators
including mammals, birds, snakes, turtles, sala-
manders, other frogs, insects, and spiders (50).

The limited data on the toxicity of nitrate
to prey and predators of amphibians seem to
suggest that amphibian survival can be
impacted. Nitrate toxicity experiments using
caddisfly larvae show 96-hr LC50 values above
90 mg/L for Cheumatopsyche pettiti and
Hydropsyche occidentalis (16) (Table 1). Adult
fish have higher 96-hr LC50 values for nitrate,
ranging from 800 to 12,000 mg/L (51,52).
Nitrate concentrations in the range of 1-10
mg/L are lethal to the eggs and, to a lesser
extent, the fry of two salmonid species (45)
(Table 1). A large percentage (31%) of rain-
bow trout (Salmo gairdnerz) eggs and 15% of
the fry died when exposed to 2.3 mg/L nitrate
(45) (Table 1).

Ecological implications. Although nitrate
toxicity negatively affects the physiology and
behavior of amphibians and other aquatic
organisms, few studies have examined the
resulting influences these effects may have on
the ecology of the exposed species or popula-
tions (38). Therefore, the consequences of
nitrate pollution on amphibian populations
are hard to quantify. However, the data sug-
gest that the problem of nitrate pollution is
extensive and that the compound is toxic
enough to represent one of the most pervasive
contaminant threats to amphibian survival in

Table 1. The toxicity of nitrate to amphibians and their prey and predators.

Concentration of
Species Stage End point nitrate (mg/L) Reference

Amphibian
Bufo americanus Tadpole 96 hr-LC50 13.6, 39.3 (38)
Pseudacris triseriata Tadpole 96 hr-LC50 17 (38)
Rana pipiens Tadpole 96 hr-LC50 22.6 (38)
Rana clamitans Tadpole 96 hr-LC50 32.4 (38)
P. triseriata Tadpole Developmental 2.5-10 (38)
R. pipiens Tadpole Developmental 2.5-10 (38)
R. clamitans Tadpole Developmental 2.5-10 (38)
Bufo bufo Tadpole 96 hr-LC50 385 (43)
B. bufoa Tadpole Developmental 9 (39)
B. bufoa Tadpole Death 22.6 (39)
Litoria caeruleaa Tadpole Developmental 9 (40)
L. caeruleaa Tadpole Death 22.6 (40)
Rana temporariab Adult EC50. paper 3.6 g/m2 (44)
H. temporariab Adult EC50, soil 6.9 g/m2 (44)

Amphibian prey and predators
Cheumatopsyche pettiti Larvae 96 hr-LC50 113.5 (16)
Hydropsyche occidentalis Larvae 96 hr-LC50 97.3 (18)
Salmo gairdneri Egg and fry 46% mortality 2.3 (45)
Salmo clarki Egg and fry 41% mortality 4.5 (45)

Abbreviations: 96-hr LC5, lethal concentration of nitrate to 50% of test individuals; EC50, median effective concentration.
"Tadpoles were exposed to two concentrations of nitrate; therefore, the 96-hr LC50was not determined. However, signifi-
cant effects were found on tadpoles as compared to controls in an 8-day test. bFrogs were placed on moist paper or soil
spread with ammonium nitrate granules. Symptoms of acute toxicity, which Oldham et al. (44) predicted would lead to

death, were considered the effect.
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North America and perhaps elsewhere. Lethal
concentrations of nitrate for a number of anu-
ran species are in the range of 13-40 mg/L,
with chronic effects occurring at concentra-
tions below 10 mg/L. Water quality data for
the agricultural and urban areas that have
been sampled in North America show that
the nitrate concentrations in surface waters
exceed these critical toxicity levels for
amphibians for extended periods of time and
during sensitive times of anuran develop-
ment, such as the egg and tadpole stages
(Figure 2). The average concentration shown
in Figure 2 is conservative and does not rep-
resent the maximum concentration that
could possibly occur. Because these are the
only data available, Figure 2 shows sample
results of larger streams. We suggest that
these habitats will typically have lower aver-
age concentrations of nitrate than small
ponds, ditches, and watercourses near point
sources simply because of high dilution fac-
tors. Smaller ponds and ditches currently rep-
resent a large portion of the available
amphibian habitat in agricultural areas (55).
Despite these conservative nitrate concentra-
tions, even these average values in surface
waters in North America indicate many areas
that may be directly toxic to amphibians
(Figure 2). Of the 8,545 water quality sam-
ples collected from the states and provinces
bordering the Great Lakes, 19.8% contained
nitrate concentrations that exceeded 3 mg/L
and 3.1% of the samples exceeded 10 mg/L.

Because adult fish are less susceptible to
nitrate than amphibians, nitrate-resistant adult
fish may increase the predation pressure on

Average nitrate in
surface waters (mg/L Potential efcts on amphibians

<2
* 2-5 Developmental effects in amphibians
* 5-10 Developmental effects in amphibians
9h:10-0 Exceedsthe LCwsfor amphibians

H j R e, *jU W :1> 30 Exceeds the LCws for amphibians

A,to.

Figure 2. Average nitrate concentrations in surface water from the U.S. states and the Canadian province that
border the Great Lakes. LC median lethal concentration. Canadian information from the Ontario Ministry of
Environment and Energy (5. U.S. information from the U.S. Environmental Protection Agency (54).

eggs and tadpoles. However, the susceptibility
of fish eggs and fry to nitrate may also reduce
some fish populations. The same can be said
about invertebrates: the toxicity data imply
that some invertebrates may be more resistant
to nitrate than some amphibians. This may
increase a tadpole's chance of predation if it is
exposed to levels of nitrate that alter behavior.
Birds, reptiles, and mammals may also find it
easier to catch amphibian tadpoles that have
been compromised by nitrate exposure.

What can be done about this problem?
The use of vegetated buffer zones around
watercourses can drastically reduce the
amount of nitrate entering the surface water
through runoff (56,5A. Effective buffer strips
can range from mixed woodland to grassland
that varies in size from a few meters to hun-
dreds of meters. A 24-m grass buffer in south-
ern England reduced nitrate concentrations in
a watercourse from 12 to < 1 mg/L (58).
Similarly, a 19-m mixed woodland buffer in
the state of Maryland reduced concentrations
in a stream from approximately 7 to < 0.5
mg/L during the spring and summer (56).
Buffer zones are easy to construct and can be
effective within 1 year (56,52). Fences along
watercourses exclude grazing cattle and assist
vegetation regeneration, which protects the
watercourse and increases the habitat for
amphibians and other aquatic organisms (59).
Unfortunately, buffer strips will not help to
reduce nitrate that enters the streams through
tile drainage. However, the key to minimizing
the agricultural input of nitrate to surface
water is the efficient use of fertilizers as indi-
cated by the proportion ofadded nitrogen that

is removed by the harvested portion of the
crop. The time of application is also impor-
tant; if the fertilizer is applied as a pre-emer-
gent or at the postseason stage, crop uptake,
the major utilizer of nitrogen, will be absent.
Therefore, the use of the best management
practices developed for nitrogen fertilization
along with buffer zones around watercourses
can reduce or virtually eliminate the impacts
of nitrogen contamination on wildlife.

Conclusion
Nitrate levels in many agricultural ecosystems
of North America exceed 1 mg/L, i.e., con-
centrations that are toxic to amphibians
and/or other aquatic organisms. The benefits
of increased productivity due to nitrate are
likely outweighed by the impact on wildlife
health and survival (38,41). We conclude
that it is highly probable that nitrate concen-
trations in surface waters in North America
are adversely affecting amphibian survival.
Nitrogen pollution will undoubtedly become
an even larger global problem if agricultural
and urban development continues in devel-
oped and developing countries without the
incorporation of safeguards to reduce the
amount of nitrogen that enters aquatic envi-
ronments. Increasing the number of species
studied, testing with environmentally rele-
vant concentrations (2-100 mg/L), and
examining the impact on wild populations
are vital to a better understanding of the
effects of nitrates on amphibian ecology.
Because high levels of nitrates and other agri-
cultural chemicals such as pesticides occur in
the spring and early summer months in
North America, additive or synergistic toxici-
ty of these chemicals also needs to be deter-
mined. Although there is a need to conduct
more field experiments on nitrate toxicity to
amphibians, the known information suggests
a serious potential for toxicosis that must be
addressed immediately.
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